The Performance of Mixed Manufacturer Metal On Metal Total Hip Replacements

Cook R1, Latham J2, Wood R1

Abstract

Using a femoral head from one manufacturer on the stem of another manufacturer poses the risk that the taper interface between the components may not contact correctly and the performance of the joint will be impaired. The cohorts in this study are a combination of modular Birmingham Hip Resurfacing (BHR) and Adept femoral heads on CPT stems. The study reviews the geometry of the taper interfaces to establish if the taper clearance angles was outside of the normal range for other taper interfaces. In addition the rates of material loss from the bearings and taper and a ranking of the stem damage were reviewed to determine if the levels of loss were above that seen for other similar joints.

The material loss analysis demonstrated that the rates or levels of loss from the bearings, taper and stem were no different to levels published for manufacturer matched joints and in many cases were lower. The results demonstrate that the taper clearance angles for the mixed manufacturer joints (BHR-CPT: 0.067 to -0.116, Adept-CPT: 0.101 to -0.056) were within the range of other studies and manufacturer matched clearances (0.134 to -0.149).

Using components from different manufacturers has not in this instance increased the level of material loss from the joints, when compared to other similar manufacturer matched joints.

Keywords: total hip; mix and match; metal on metal

Level of Evidence: AAOS Therapeutic Level III

Introduction

The use of large diameter Cobalt Chromium femoral head components in total hip replacements has come under scrutiny due to the poor performance of these joints in-vivo. In particular the performance of the taper junction between the head and femoral components. The use of mixed manufacturer components has been a particular area of focus, where the manufacturers’ variation in angle of their 12/14 tapers can result in different taper clearance angles and contact lengths from those specified by the manufacturers.
The taper clearance angle provides a means of assessing how the male and female components of a taper will contact (Figure 1). A positive clearance indicates that the taper would have contacted at the proximal / narrow diameter end of the taper, while a negative clearance is the opposite, with a distal contact at the larger diameter end of the taper. The angles for the ASR and Articuleze joints presented by Langton et al [2] were 5.670° (5.568° to 5.798°) and 5.639° (5.584° to 5.685°) (taper engagement level identified data) which, when paired with the 5° 43’ Corail trunnion [3], provide clearances of -0.047° (-0.149° to 0.081°) and -0.078° (-0.133° to -0.032°) degrees. This range of clearance angles and differences in design specification is further reflected in the study of Kocagöz et al. [1] whose cohort of 50 metal femoral head had a 35:15 split between positive and negative clearance angles. The range of taper clearances within the study [1] was 7.5 to -8 arcminutes (0.125° to -0.133°), with 50% of the values between 5 and -2 arcminutes (0.083° to -0.033°).

This analysis demonstrates that there is no consistent or single design philosophy for taper contacts between manufacturers, with some opting for proximal clearances and positive clearances and others for distal contacts and negative clearances. In the case of the ASR – Corail pairings the variation in the measured angle of the tapers provide both positive and negative clearances on the same trunnion.

The analysis of retrieved joints has highlighted three sources of material loss; the bearing surfaces [4-6], the taper interface [7-11] and the cement-stem interface [12,13] which are capable of triggering a reaction significant enough to require revision surgery. The ability of bearing surface wear to cause adverse reactions is clear from the retrieval studies [4-6] focused on resurfacing joints. The ability of the material loss from the taper interface to initiate adverse reactions can be demonstrated by the increasing numbers of failures in metal on polymer bearings [7-11]. The issue of debris from the cement stem interface was demonstrated by the work of Donnell et al. and Bryant et al. on the Ultima hip replacement system [12,13], with Hothi et al. [14] showing that damage was present on seven different designs of cemented stem.

The literature contains a number of retrieval studies where the values of linear [6,15-19] and volumetric loss [15,19-24] from the bearing surfaces of metal on metal joints have been presented (Table 1). However, in most studies, the values for edge-wearing components have not been differentiated from those without edge wear, meaning the values provided are not reflective of the true wear rates for these joints. Only two studies [6,17] provided linear wear rates and only one provides volumetric rates [22] which are representative of the bearing performance of well aligned components in-vivo (mean bearings combined: 1.10mm/yr).

There are eight studies [2,19,21,23-27] in the literature which have quantified the material loss from the surfaces of female tapers of both manufacturer matched and mixed manufacturer metal on metal joints (Table 2). The published mean volumetric wear rates from these studies range from 0.85 to 0.127 mm3/year, with median values ranging from 0.132 and 0.238 mm3/year (Table 2).

Cook et al. [28] assessed the volume of material lost from the surfaces of cemented stems, showing mean rates of loss between (0.003 and 1.9mm3/yr), however these measures has a +/-16% error due to the both the complexity and variability in the geometry of different components. The accepted method for the characterization of the level of damage to cemented stems is the 5 level ranking developed by Bryant et al. [12]. Two studies have utilized this score, Bryant et al. [12] who provided a mean score of 2.9 for 105 manufacturer matched cemented components, and Hothi et al. [14] who, while not providing an average value, reported 27 of the 36 stems reviewed as having a score of 3 or over.

These previously published values of material loss and ranking obtained from retrieved metal on metal joints, provide the baseline against which the performance of other joints can be compared. The objective of this study is to determine how the levels of material loss from three sites on a group of mixed manufacturer joints relates to other previously reported levels of material loss from manufacturer matched joints. We hypothesize that the level of material loss from the bearings, taper and cement stem interfaces will not exceed that of other joint designs.
Table 1: Linear and Volumetric Wear Rates of the bearings surfaces of metal on metal joints

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of Hips</th>
<th>Joint Design</th>
<th>Edge worn</th>
<th>Time In-Vivo (Years)</th>
<th>Femoral Head Linear Rate (µm/year)</th>
<th>Acetabular Cup Volumetric Rate (mm³/year)</th>
<th>Bearings Combined Linear Rate (µm/year)</th>
<th>Volumetric Rate (mm³/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthies et al.</td>
<td>60</td>
<td>Modular THR</td>
<td>Edge worn</td>
<td>Median: 2.6 (1 - 6.1)</td>
<td>Median: 16.87 (0.82 - 119.15)</td>
<td>Median: 0.00 (0.00 - 119.15)</td>
<td>Median: 4.18 (16.87 - 119.15)</td>
<td></td>
</tr>
<tr>
<td>Kwon et al.</td>
<td>9</td>
<td>Resurfacing</td>
<td>Pseudotumour</td>
<td>Mean: 3.6 (1 - 6.6)</td>
<td>Mean: 8.1 (2.75 - 25.4)</td>
<td>Mean: 7.19 (0.82 - 4.15)</td>
<td>Mean: 1.00 (0.87 - 173.81)</td>
<td></td>
</tr>
<tr>
<td>Underwood et al.</td>
<td>122</td>
<td>Combined</td>
<td>Edge worn</td>
<td>Mean: 3.8 (1 - 10.1)</td>
<td>Mean: 7.36 (16.87 - 24.9)</td>
<td>Mean: 1.28 (0.18 - 3.33)</td>
<td>Mean: 0.85 (0.6 - 1.18)</td>
<td></td>
</tr>
<tr>
<td>Glyn-Jones et al.</td>
<td>72</td>
<td>Combined</td>
<td>Pseudotumour</td>
<td>Mean: 3.3 (1 - 5.75)</td>
<td>Mean: 5.3 (0 - 84.1)</td>
<td>Mean: 6.8 (0 - 180)</td>
<td>Mean: 4.8 (0 - 62.3)</td>
<td></td>
</tr>
<tr>
<td>Hart et al.</td>
<td>45</td>
<td>Resurfacing</td>
<td>Control</td>
<td>Mean: 3.3 (1 - 7.3)</td>
<td>Mean: 2.2 (0 - 62.3)</td>
<td>Mean: 2.2 (0 - 62.3)</td>
<td>Mean: 5.6</td>
<td></td>
</tr>
<tr>
<td>Nawabi et al.</td>
<td>94</td>
<td>Combined</td>
<td>Unexplained Pain</td>
<td>Mean: 2.5 (1.5 - 5.6)</td>
<td>Mean: 2.5 (1 - 6.5)</td>
<td>Mean: 1.9 (1 - 4.2)</td>
<td>Mean: 2.2 (2 - 8)</td>
<td></td>
</tr>
<tr>
<td>Lord et al.</td>
<td>10</td>
<td>Resurfacing</td>
<td>Combined</td>
<td>Mean: 3.75 (1.5 - 9.4)</td>
<td>Mean: 2.7 (0.6 - 8.7)</td>
<td>Mean: 2.1 (3.0 - 4.2)</td>
<td>Mean: 2.3 (0.6 - 4.8)</td>
<td></td>
</tr>
<tr>
<td>Hoithi et al.</td>
<td>110</td>
<td>Modular THR</td>
<td>Combined</td>
<td>Mean: 3.7 (1 - 7.1)</td>
<td>Mean: 3.10 (0.06 - 45.46)</td>
<td>Mean: 2.56 (0.04 - 39.62)</td>
<td>Mean: 2.2 (2 - 8)</td>
<td></td>
</tr>
<tr>
<td>Sidaginamale et al.</td>
<td>116</td>
<td>Modular THR</td>
<td>Combined</td>
<td>Mean: 4.8 (0.6 - 9.1)</td>
<td>Mean: 0.402 (SD: 0.584)</td>
<td>Mean: 0.38 (SD: 1.39)</td>
<td>Mean: 4.81 (SD: 2.4)</td>
<td></td>
</tr>
<tr>
<td>This Study</td>
<td>83</td>
<td>Resurfacing</td>
<td>Combined</td>
<td>Mean: 3.7 (1 - 7.1)</td>
<td>Mean: 3.10 (0.06 - 45.46)</td>
<td>Mean: 2.56 (0.04 - 39.62)</td>
<td>Mean: 2.2 (2 - 8)</td>
<td></td>
</tr>
</tbody>
</table>

Materials and Methods

Study demographics

The implants reviewed within this study are shown in Table 3. They are mixed manufacturer head and stem combinations formed of cemented collarless tapered cobalt-chrome Zimmer CPT stems paired with either an Adept LDMH (Finsbury Orthopaedics) (n=22) or a BHR large diameter modular head (LDMH) (Midland Medical technologies; Smith and Nephew) (n=22).

Ethical approval was granted by the National Research Ethics Service Committee South Central = Southampton A.
Table 4 Mean, Median and range of values of material loss from the implant surfaces

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of Hips</th>
<th>Head Sizes (mm)</th>
<th>Time In Vivo (Months)</th>
<th>Cumulative Volume (mm³/year)</th>
<th>Rate (µm/yr)</th>
<th>Rate (mm³/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nawabi et al. 18</td>
<td>58</td>
<td>46 (38 - 53)</td>
<td>Mean: 46 (38 - 53)</td>
<td>Mean: 1.4 (0 – 18.1)</td>
<td>Mean: 0.0 (0 – 30.6)</td>
<td></td>
</tr>
<tr>
<td>Control: 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matthies et al. 21</td>
<td>110</td>
<td>46.2 (38 - 56)</td>
<td>Mean: 44.2 (12 - 85)</td>
<td>Median: 2.02</td>
<td>Mean: 0.85 (0 – 4.29)</td>
<td></td>
</tr>
<tr>
<td>Hiorthi et al. 22</td>
<td>10</td>
<td>S-ROM stem</td>
<td>36</td>
<td>Mean: 63.5 (40 - 84)</td>
<td>Mean: 0.132 (0.015–0.518)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Corail stem</td>
<td>36</td>
<td>Mean: 56 (50 - 77)</td>
<td>Mean: 0.218 (0.002-0.179)</td>
<td></td>
</tr>
<tr>
<td>Ethical approval was granted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langton et al. 2</td>
<td>63</td>
<td>ASR XL</td>
<td>Mean: 45.5 (39 - 57)</td>
<td>Median: 33 (11 - 64)</td>
<td>Mean: 5.92 (0.57 to 32.78)</td>
<td>Mean: 0.44 (0.02 to 8.34)</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>Articulise (Pinnacle)</td>
<td>36 (+1.40)</td>
<td>Median: 42 (12 - 75)</td>
<td>Median: 1.39 (0.24 to 106)</td>
<td>Mean: 0.127 (0.01 to 3.15)</td>
</tr>
<tr>
<td>Sidagaminale et al. 29</td>
<td>116</td>
<td>mixed</td>
<td>Mean: 4.8 (0.6 - 9.1)</td>
<td>Median: 0.2 (0.01 – 8.34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brock et al. 28</td>
<td>12</td>
<td>ASR Taper - Corail stem</td>
<td>Mean: 51 (+/-23)</td>
<td>Median: 0.494</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>ASR Taper - S-ROM stem</td>
<td>Mean: 51 (+/-23)</td>
<td>Median: 0.402</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Pinnacle Taper - Corail stem</td>
<td>Mean: 51 (+/-23)</td>
<td>Median: 0.26 (0 – 0.52)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>Pinnacle Taper – S-ROM stem</td>
<td>Mean: 51 (+/-23)</td>
<td>Median: 0.26 (0 – 0.52)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>Pinnacle – Summit stem</td>
<td>Mean: 51 (+/-23)</td>
<td>Median: 0.26 (0 – 0.52)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This study</td>
<td>22</td>
<td>BHR</td>
<td>Mean: 45.3 (42 - 52)</td>
<td>Median: 1.11 (0.4 – 39.02)</td>
<td>Mean: 0.26 (0 – 3.45)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Adept</td>
<td>Mean: 47.1 (42 - 54)</td>
<td>Median: 0.58 (0 – 7.85)</td>
<td>Mean: 0.16 (0 – 0.84)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Linear and Volumetric Wear Rates from tapers of metal on metal joints

Material loss assessment

The volumetric material loss measurements for the bearing and taper surfaces of each joint in the study were obtained using a non-contact optical coordinate measuring machine (OrthoLux, RedLux, Southampton UK). The measurement procedure and validation for spherical components can be found in Tuke et al. [31]. Direct assessment of the bearing surfaces was performed with a point cloud density of 1 point per degree circumferentially and 1 point per degree from the pole to the edge. The regions of damage on the bearing surfaces were identified and removed and a sphere fitted to the remaining points. The linear wear was assessed as the maximum linear deviation from the fitted sphere in the center of the wear scar and the volumetric loss measured as the volume beneath the fitted sphere and the assessed surface within the wear scar region.

The taper assessments were performed on a casting of the taper surface. The casting was made using Microset 202 (Microset Products Ltd, England).
The Performance of Mixed Manufacturer Metal On Metal Total Hip Replacements

Nuneaton, UK) replication material which has the ability to reproduce the surface with a resolution of 0.05 μm. The measurements of the taper surface were collected with a point density of 2 points per degree circumferentially and 70 points per mm along the length. The damaged regions of the taper surface and any regions with material deposits were excluded and a cone fitted to the remaining original surface. The volumetric loss was assessed as the volume beneath the fitted cone within the wear scar region. Validation of this method has been published [32] and the limits of agreement (95%) of the material loss were -0.0416 to 0.173 mm3 with a taper angle shown to be within 0.0024°.

Volumetric loss and the angles of the retrieved trunnions was not assessed. The surfaces of the trunnions were perceived to have some level of deformation or damage along their full lengths. This provided no original surface to which to apply a cone fit, meaning any volumetric value or angle assessment would have had unquantifiable and inconsistent levels of error, with the magnitude of the error varying with the level of damage to the trunnion. In order to assess the taper clearance angles, the manufacturers stated trunnion angle for the CPT (5° 40 minutes), as well as the Finsbury orthopedics Zweymuller Alloclassic (5° 38 minutes) [33] and the Synergy stem (5° 40 minutes) were gathered. The Alloclassic stem and the synergy stem represent the manufacturer matched stem pairings for the Adept and BHR heads. It is of note that both the BHR and Adept heads were marketed initially without a specified stem pairing and these were subsequently identified as appropriate. In addition the Metasul and Durom female taper (5° 38 minutes) [34] was reviewed in relation to the CPT trunnion to define manufacturers specified taper clearance for this pairing.

Stem grading

The stems were graded using the criteria described by Bryant et al. 2013 [4]. The scale classifies stems into one of five categories based on the area of damage to the stem surface from within the cemented region. The categories are 1: <10%, 2: 10-25%, 3: 25-50% 4: 50-75% and 5: >75% of the surface.

<table>
<thead>
<tr>
<th>Bearing Manufacturer</th>
<th>Vs. CPT Trunnion angle of 5° 40' or 5.663°</th>
<th>Vs. Zweymuller Trunnion angle of 5° 38' or 5.635°</th>
<th>Vs. Synergy Trunnion angle of 5° 40' secs or 5.663°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adept</td>
<td>n = 22</td>
<td>5.662°</td>
<td>0.005° (0.103° to -0.056°)</td>
</tr>
<tr>
<td>BHR</td>
<td>n = 22</td>
<td>5.660°</td>
<td>-0.005° (5.610° to 5.767°)</td>
</tr>
<tr>
<td>Metasul</td>
<td>-</td>
<td>-0.034°</td>
<td>2.04</td>
</tr>
</tbody>
</table>

Table 5: Table 3 Mean, median and range of the Taper Angles and Clearance angles.

Results

The bearing surface analysis identified 18 out of the 44 joints (BHR = 6, Adept = 12) as being edge worn. The exclusion of the edge wearing joints from the data sets, provided a mean wear rate for the joints in-vivo of 0.24 and 0.55 mm³/year for the femoral heads and 0.37 and 0.4 mm³/year for the acetabular cups of the Adept and BHR joints respectively (Table 4). The wear rate of the non-edge worn femoral heads was significantly higher for the BHR joints (p = 0.006), but there was no significant difference between the levels from the acetabular cups (p = 0.865).

Analysis of the tapers demonstrated a range of levels of material loss. The mean rate of volumetric loss from the Adept and BHR female taper surfaces respectively was 0.16 and 0.26 mm³/year (Table 4). Comparison of the means of the two rate of loss using a 2 sample t-test showed there was no statistically significant difference (p = 0.179). There was also no significant difference between the rates of volume loss from the tapers of the joints with edge worn bearings and those without for either the BHR (p = 0.113), the Adept pairings (p = 0.639) or the two groups combined (p = 0.444).

All of the stems examined displayed evidence of damage to their surfaces which would have been within the cement mantle. The mean Bryant score for the BHR and Adept coupled stems was 2.4 and 2.9 respectively. There was no statistically significant difference in the level of stem damage between the BHR and Adept groups (p = 0.498), nor was there a significant difference in the stem score for the edge worn and non-edge worn bearings (BHR: p = 0.481, Adept: p = 0.899, combined: p = 0.763).

The assessment of the BHR and Adept female taper surfaces showed a difference in the mean taper angle (5.690° vs. 5.662° respectively). This difference in the taper angle of the two joints was approaching significance (p = 0.054). The taper angles of the joints resulted in different taper clearance angles when compared to the manufacturer specified trunnion angle for the CPT (Table 5). The BHR taper angle was similar to that of the CPT trunnion, but provided a negative clearance of -0.005 degrees. In con-
trast the Adept taper provided a positive clearance angle of 0.024°. Based on the taper angles assessed in this study, the manufacturer matched pairings would have provided mean clearances of 0.057° and -0.005° for the Adept-Alloclas-
cic and the BHR-Synergy respectively and -0.034° for the Metasul-CPT, Table 5.

The correlation between the head size, bearing clearance, time in-situ, offset, taper angle and taper clearance
vs. ideal CPT (tapers only) on the volume of loss from the bearing surfaces and the taper and the stem grading was investigated. The only significant correlations were found between the BHR taper loss and the head size ($r = 0.438, p = 0.042$) and the CPT derived offset with the stem grading of the Adept group ($r = -0.577, p=0.019$).

Inter site

When the volume of material loss from the bearings was compared to that of the taper and the stem grading from the whole data set ($n = 44$), only one significant correlation was found between the bearing surface wear and the stem grading (Head $r = -0.435, p = 0.007$, Cup $r = -0.333, p = 0.044$). However, removal of an edge worn BHR sample which had lost 172.6 mm³ and 369.3 mm³ from the femo-
ral head and acetabular cup respectively rendered this relation-
ship non-significant.

Separate analysis considering the different joint designs and the edge worn and non-edge worn joints separately failed to provide any significant correlations between the material lost from the different sites.

Discussion

In order to determine if the bearing surfaces were per-
forming as would be expected, the results from the wear analysis in this study need to be compared to those of pre-
vious studies on similar joints. Table 1 contains linear
[6,15-19] and volumetric loss [15,19-24] measures from the bearing surfaces of retrieved metal on metal joints. However, in most studies, the values for edge-wearing components have not been differentiated from those without edge wear, meaning the values provided by most stud-
ies are not reflective of the true wear rate for these joints. Only three [6,16,17] out of the six studies provided linear wear rate values which are representative of a well aligned components in-vivo and two of those only presented val-
ues for the acetabular cups.

The mean linear wear rates of reported by Underwood
et al. [17] were higher than those reported in this study. However, Matthies et al. [6] provided median wear rates for 0 μm/year (0 - 4.77) and 0 μm/year (0 - 6.18). The

inference of this is that 37 or more of these 74 retrieved joints had no measureable wear. This may be a reflection of the shorter time in-situ of these joints compared to the current study, or a difference in the ability of the round-
ness machine measurement technique to pick up low levels of wear compared to the RedLux technique. However the maximum linear wear rates presented for these joints are higher than this study.

The mean volume loss rate of the non-edge wearing femoral head components published by Morlock et al. [22] was lower than from the BHR femoral components in this study. However, the mean volume loss rates from the Ad-
pt femoral heads, the acetabular surfaces and the bearings combined for both designs from this study were below the values presented.

When the rates of the whole data, incorporating the edge worn values are compared to the rates of loss those of the previous studies [15,19-23,30], the current values sit within the range presented in Table 1.

The volumetric wear rate of the non-edge wearing joints demonstrate that the BHR joints had double the rate of vol-
ume loss from the femoral heads compared to the Adept. This difference can be explained in part by the lower clearance (40μm less) of the Adept joints (Table 4). The Adept clearance is high enough to overcome any fears around de-
formation during insertion [35] and high friction due to lu-
bricant starvation [36], but low enough to reduce the vol-
ume lost as a result of the running in wear associated with higher clearance joints [17,37].

There are eight studies [2,19,21,23-27] in the literature which have quantified the material loss from the surfaces of female tapers (Table 2). Matthies et al. [21] and Hothi et
al [23] provide values for the cumulative loss from the sur-
faces of 2.02 mm³ (Median) and 1.52 mm³ (Mean), higher than the mean and median values in this study for the Ad-
pt tapers, but a higher median and lower mean (0.22 mm3
difference) when compared to the BHR joints.

Comparing the material loss values in this study with those of previous studies (Table 2), the loss is beneath
that of Matthies et al. [21] obtained from a range of dif-
ferent joint designs, Hothi et al. [23] for Corail – Ultamat
head pairings and the ASR XL tapers presented by Lang-
ton et al. [2]. Only the mean values for the Articuleze-Pin-
cle joints (difference BHR: 0.133, Adept: 0.033 mm³/ year) and the median value for the S-Rom stem – Ultamat
head parings were less than those presented here. In both of these studies [2,23] the head sizes were 36mm which is 6mm smaller than the smallest head considered in this co-
hort, a known variable in the performance of tapers and the S-Rom stem also has an 11/13 taper rather than a 12/14 which may have influenced the performance.
Comparison of the volumes of loss from the bearings to the taper and stem showed no significant correlations, demonstrating that the loss occurring at these individual sites was independent of what was occurring at the other sites. The results also showed no correlation between joint specific variables such as offset, clearance, head size and time in-situ and the levels of material loss.

The clearance angles for the combinations in this study are within the range presented by Kocagöz et al. [1] and the manufacturers, with the average clearance for each group maintaining the positive or negative clearance which would have been specified for that joint design. The clearance angles were not correlated to the volume of loss from the taper, in agreement with the findings of Kocagöz et al. [1] for the visual grading of taper damage vs. taper clearance.

The closer match of angle seen in the current mixed manufacturer taper and trunnions has advantages. The taper engagement length between the two surfaces will be higher than those with a more extreme taper clearance and larger engagement lengths have been shown to reduce the volume loss from the taper [23]. The horizontal lever arm of distally contacting tapers detailed by Langton et al. [2] will be reduced, which has also been linked to heightened volume loss [2] and the gap between the two surfaces at the larger diameter (open) end of the proximally contacting tapers will be reduced, minimizing the access to fluid entering the interface.

It is clear from this study that there is no consensus on what is an appropriate taper clearance angle. The clearance angles for manufacturer matched pairings demonstrate that the Metasul-CPT and BHR Synergy tapers were designed with a negative clearance of -0.034° and -0.005° respectively, while the Adept-Alloclassic pairing had a positive clearance of 0.057°. Different manufacturers have designed for different clearances and contact locations. The clearances within the study by Langton et al. [2] for the ASR-Corail pairings (-0.149° to 0.081°), the BHR-synergy pairings (-0.116° to 0.067°) and the Adept-Alloclassic pairings (-0.023 to 0.134) in this study, demonstrate that both negative and positive clearance angles are possible within the same joint design on a particular stem due to the tolerances of the taper manufacturing.

A review of cemented stems within the previous studies [12-14,38-42], demonstrates that damage is identifiable on a range of designs and materials. Using the data available in the Bryant et al. [12] paper, it was possible to demonstrate that there was no significant difference between the mean stem damage rankings in their study and this work ($p = 0.147$).

It is of note that while the performance of the three interfaces with regards to material loss does not differ and is in many cases better than manufacturer matched options. These joints had the potential to suffer from material loss at all three interfaces, which in combination elevated the overall volume of material released into the patient.

Conclusions

This study has shown that the material loss from the bearing, taper and cement-stem interface of these mixed manufacturer total hip replacements is equal to and in many cases lower than that published by other centers for manufacturer matched joints. The taper clearance angles of these mixed manufacturer joint pairings are within the normal range for modular taper connections of manufacturer matched joints and has maintained the proximal or distal nature of the taper which the manufacturer matched joints would have produced. The use of mixed manufacturer joints has not in this instance adversely affected the performance of the joints when compared to other similar manufacturer matched joints.

Acknowledgements

The authors would like to acknowledge the EPSRC for funding through the grant reference EP/F034296/1. All data supporting this study are openly available from the University of Southampton repository at: http://doi.org/10.5258/SOTON/D0127

Disclosure

The authors declare that there is no conflict of interest regarding the publication of this paper. For full disclosures refer to last page of this journal.

References

Langton DJ. Shorter, rough trunnion surfaces are associated with higher taper wear rates than longer, smooth trunnion surfaces in a contemporary large head metal-on-metal total hip arthroplasty system. Journal of Or.

for Corrosion and Fretting, and Its Relationship to Material Loss of Tapered, Modular Junctions of Retrieved

Langton DJ, Nargol A VF, Joyce TJ. V olumetric wear assessment of failed metal-on-metal hip resur-

Morlock MM, Bishop N, Zustin J, Hahn M, Rüther W, Amling M. Modes of Implant Failure After Hip Resur-

Hothi HS, Whitaker RK, Kocer O, Sturrock RH, Shearwood-Porter NR, Latham JM, Panagiotopoulos AC, Whittaker RK, Rhead C, Skinner JA, Hart AJ. Clinical signifi-
cance of corrosion of cemented femoral stems in metal-on-metal hips: a retrieval study. International Or-

Mathies A, Skinner J, Osmani H, Henckel J, Hart A. Pseudotumors Are Common in Well-positioned Low-

Nawsu D, Nasiri N, Do H, Storer K, Elpers M, Su E, Wright T, Potter H, Padgett D. What Causes Unex-

Lord JK, Langton DJ, Nargol AVF, Joyce TJ. V olumetric wear assessment of failed metal-on-metal hip resur-

Morlock MM, Bishop N, Zustin J, Hahn M, Rüther W, Anling M. Modes of Implant Failure After Hip Resur-

Hothi HS, Whitaker RK, Mescowian JM, Blum GW, Skinner JA, Hart AJ. Influence of stem type on material

Sädigiamnane R, Joyce TJ, Bowsher JG, Lord JK, Avery PJ, Natar S, Nargol AV, Langton DJ. The clinical im-

plications of metal debris release from the taper junctions and bearing surfaces of metal-on-metal hip arthro-

Broek TM, Sädigiamnane R, Rishnott S, Nargol AVF, Bowsher JG, Savisaar C, Joyce TJ, Denham DJ, Lord JK, Langton DJ. Shutter, mugh trunnion surfaces are associated with higher taper wear rates than longer, smooth trunnion surfaces in a contemporary large head metal-on-metal total hip arthroplasty system. Journal of Or-